704 research outputs found

    Kondo Breakdown as a Selective Mott Transition in the Anderson Lattice

    Full text link
    We show within the slave boson technique, that the Anderson lattice model exhibits a Kondo breakdown quantum critical point (KB-QCP) where the hybridization goes to zero at zero temper- ature. At this fixed point, the f-electrons experience as well a selective Mott transition separating a local-moment phase from a Kondo-screened phase. The presence of a multi-scale QCP in the An- derson lattice in the absence of magnetism is discussed in the context of heavy fermion compounds. This study is the first evidence for a selective Mott transition in the Anderson lattice.Comment: 4 pages, 2 figures, version with new figures and typos correcte

    Model of Quantum Criticality in He3 bilayers Adsorbed on graphite

    Full text link
    Recent experiments on He3 bilayers adsorbed on Graphite have shown striking quantum critical properties at the point where the first layer localizes. We model this system with the Anderson lattice plus inter-layer Coulomb repulsion in two dimensions. Assuming that quantum critical fluctuations come from a vanishing of the effective hybridization, we can reproduce several features of the system, including the apparent occurrence of two quantum critical points (QCP), the variation of the effective mass and coherence temperature with coverage.Comment: 4 pages, 2 figures, new version as published on PRL, journal reference and DOI adde

    η\eta collective mode as A1g_{1g} Raman resonance in cuprate superconductors

    Full text link
    We discuss the possible existence a spin singlet excitation with charge ±2\pm2 (η\eta-mode) originating the A1gA_{1g} Raman resonance in cuprate superconductors. This η\eta-mode relates the dd-wave superconducting singlet pairing channel to a dd-wave charge channel. We show that the η\eta boson forms a particle-particle bound state below the 2Δ2\Delta threshold of the particle-hole continuum where Δ\Delta is the maximum dd-wave gap. Within a generalized random phase approximation and Bethe-Salpether approximation study, we find that this mode has energies similar to the resonance observed by Inelastic Neutron Scattering (INS) below the superconducting (SC) coherent peak at 2Δ2\Delta in various SC cuprates compounds. We show that it is a very good candidate for the resonance observed in Raman scattering below the 2Δ2\Delta peak in the A1gA_{1g} symmetry. Since the η\eta-mode sits in the S=0S=0 channel, it may be observable via Raman, X -ray or Electron Energy Loss Spectroscopy probes

    Kondo Breakdown and Hybridization Fluctuations in the Kondo-Heisenberg Lattice

    Full text link
    We study the deconfined quantum critical point of the Kondo-Heisenberg lattice in three dimensions using a fermionic representation for the localized spins. The mean-field phase diagram exhibits a zero temperature quantum critical point separating a spin liquid phase where the hybridization vanishes and a Kondo phase where it does not. Two solutions can be stabilized in the Kondo phase, namely a uniform hybridization when the band masses of the conduction electrons and the spinons have the same sign, and a modulated one when they have opposite sign. For the uniform case, we show that above a very small temperature scale, the critical fluctuations associated with the vanishing hybridization have dynamical exponent z=3, giving rise to a resistivity that has a T log T behavior. We also find that the specific heat coefficient diverges logarithmically in temperature, as observed in a number of heavy fermion metals.Comment: new Figure 2, new results on spin susceptibility, some minor changes to tex

    Multi-scale fluctuations near a Kondo Breakdown Quantum Critical Point

    Full text link
    We study the Kondo-Heisenberg model using a fermionic representation for the localized spins. The mean-field phase diagram exhibits a zero temperature quantum critical point separating a spin liquid phase where the f-conduction hybridization vanishes, and a Kondo phase where it does not. Two solutions can be stabilized in the Kondo phase, namely a uniform hybridization when the band masses of the conduction electrons and the f spinons have the same sign, and a modulated one when they have opposite sign. For the uniform case, we show that above a very small Fermi liquid temperature scale (~1 mK), the critical fluctuations associated with the vanishing hybridization have dynamical exponent z=3, giving rise to a specific heat coefficient that diverges logarithmically in temperature, as well as a conduction electron inverse lifetime that has a T log T behavior. Because the f spinons do not carry current, but act as an effective bath for the relaxation of the current carried by the conduction electrons, the latter result also gives rise to a T log T behavior in the resistivity. This behavior is consistent with observations in a number of heavy fermion metals.Comment: 17 pages, 10 figure

    The modulated spin liquid: a new paradigm for URu2_2Si2_2

    Full text link
    We argue that near a Kondo breakdown critical point, a spin liquid with spatial modulations can form. Unlike its uniform counterpart, we find that this occurs via a second order phase transition. The amount of entropy quenched when ordering is of the same magnitude as for an antiferromagnet. Moreover, the two states are competitive, and at low temperatures are separated by a first order phase transition. The modulated spin liquid we find breaks Z4Z_4 symmetry, as recently seen in the hidden order phase of URu2_2Si2_2. Based on this, we suggest that the modulated spin liquid is a viable candidate for this unique phase of matter.Comment: 4 pages, 2 figure

    Gr\"uneisen ratio at the Kondo breakdown quantum critical point

    Full text link
    We show that the scenario of multi-scale Kondo breakdown quantum critical point (QCP) gives rise to a divergent Gr\"uneisen ratio with an anomalous exponent 0.7. In particular, we fit the experimental data of YbRh2(Si0.95Ge0.05)2YbRh_{2}(Si_{0.95}Ge_{0.05})_{2} for specific heat, thermal expansion, and Gr\"uneisen ratio based on our simple analytic expressions. A reasonable agreement between the experiment and theory is found for the temperature range between 0.4 K and 10 K. We discuss how the Gr\"uneisen ratio is a key measurement to discriminate between the Kondo breakdown and spin-density wave theories

    Spectral and Transport Properties of d-Wave Superconductors With Strong Impurities

    Full text link
    One of the remarkable features of disordered d-wave superconductors is strong sensitivity of long range properties to the microscopic realization of the disorder potential. Particularly rich phenomenology is observed for the -- experimentally relevant -- case of dilute distributions of isolated impurity centers. Building on earlier diagrammatic analyses, the present paper derives and analyses a low energy effective field theory of this system. Specifically, the results of previous diagrammatic T-matrix approaches are extended into the perturbatively inaccessible low energy regimes, and the long range (thermal) transport behaviour of the system is discussed. It turns out that in the extreme case of a half-filled tight binding band and infinitely strong impurities (impurities at the unitary limit), the system is in a delocalized phase.Comment: 14 pages, two figures include

    Exact bosonization for an interacting Fermi gas in arbitrary dimensions

    Full text link
    We present an exact mapping of models of interacting fermions onto boson models. The bosons correspond to collective excitations in the initial fermionic models. This bosonization is applicable in any dimension and for any interaction between fermions. We show schematically how the mapping can be used for Monte Carlo calculations and argue that it should be free from the sign problem. Introducing superfields we derive a field theory that may serve as a new way of analytical study.Comment: Basic equations are derived more carefully and in a simpler wa
    • …
    corecore